Race Against the Machine

A Fully-annotated, Open-design Dataset of Autonomous and Piloted High-speed Flight

Authors: M. Bosello, D. Aguiari, Y. Keuter, E. Pallotta, S. Kiade, G. Caminati, F. Pinzarrone, J. Halepota, J. Panerati, and G. Pau

Technology Innovation Institute

 $\mathbf{O}\mathbf{O}$

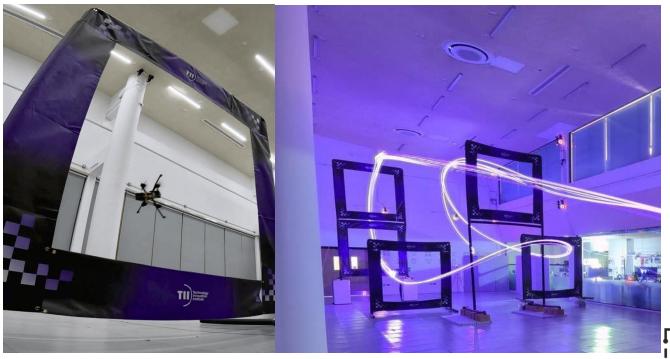
Race Against the Machine

A Fully-annotated, Open-design Dataset of Autonomous and Piloted High-speed Flight

Michael Bosello, Davide Aguiari, Yvo Keuter, Enrico Pallotta, Sara Kiade, Gyordan Caminati, Flavio Pinzarrone, Junaid Halepota, Jacopo Panerati, and Giovanni Pau

Technology Innovation Institute

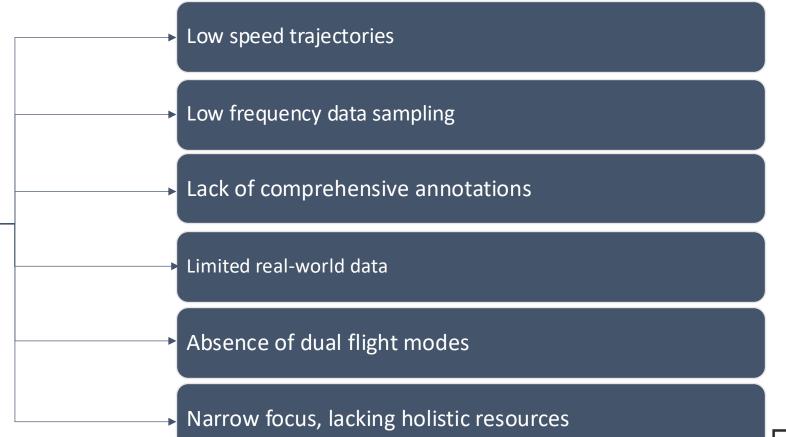
Autonomous Robotics Research Center Abu Dhabi, United Arab Emirates



Drone racing

A competitive sport where pilots control high-speed drones through challenging tracks, emphasizing agility, precision, and real-time navigation.

Pilots are equipped with a controller and goggles that allow them to have a FPV perspective


Drone Racing in research

IROS '24

Why a New Drone Racing Dataset?

While there are existing datasets, they each have limitations that prevent them from being fully suitable for autonomous drone racing, or they focus only on specific aspects of the challenge

Comparison with existing work

TABLE I: Comparison of multi-rotor and drone racing datasets for visual-inertial odometry, scene understanding, and control

Ref.	Time &	Data	Cond	litions	G	ates	Тор	Visio	n/Camera Spe	ecification	S		Pose/Iner	tial Data	Contro	I Inputs	Battery	Data
	Distance	Coll.	Scene	Lighting	Pose	Labels	Speed	Resolution/Freq.	Color	FoV	Stereo	Event	IMU	MoCap	CTBR	Motor	Voltage	Formats
Ours	~25' ~8km	Real	Indoor	3 Levels Labeled	1	\checkmark^{\dagger}	9.5m/s [¢] 21.8m/s [¶]	640x480@120Hz	RGB	155°	X	X	@500Hz	@275Hz	@100Hz	@100Hz	@50Hz	rosbag, CSV, JPEG
[2]	~22' ~10km	Real	Indoor; Outdoor	Multiple, Unlabel.	×	X	12.8m/s [◊] 23.4m/s [◊]	346x260@50Hz 640x480@30Hz*	Grayscale Grayscale	120° 186°	1	1	@500Hz @1000Hz	@20Hz [§]	X	X	X	rosbag, TXT, PNG
[5]	n/a‡	Real	Indoor, 1 Gate	Multiple, Unlabel.	×	✓	n/a	1296x864	RGB	n/a	×	X	×	X	×	X	X	JSON, JPEG
[6]	\sim 10h \sim 100km	Real + Synth.	Indoor, 5 Scenes	Multiple, Unlabel.	X	×	7m/s	1024x768@120Hz ^{††} 1024x768@360Hz ^{††}	Grayscale RGB	60°	1	X	@100Hz	@360Hz	X	@190Hz	X	rosbag, CSV, MP4, PNG Depth
[7]	~22' ~1km	Real	Indoor, 2 Scenes	Multiple, Unlabel.	×	X	2.3m/s	752x480@20Hz	Grayscale	115°	1	X	@200Hz	@20Hz [§] @100Hz	×	×	×	CSV, PLY, PNG
[8]	~10' ~3km	Real	Outdoor; 1 Scene	Multiple, Unlabel.	×	X	17.5m/s	960x800@40Hz	Grayscale	n/a	1	X	@200Hz	X	X	×	×	rosbag
[9]	~300' ~100km	Synth.	Indoor, 2 Scenes	Multiple, Unlabel.	1	√ ¶¶	13.8m/s	800x600@60Hz	RGB	120°	X	X	X	@500Hz**	@500Hz	X	X	CSV, MP4
[10]	~75'	Real	n/a	x	X	X	18m/s	×	X	X	X	X	@1000Hz	@400Hz	X	@1000Hz	@400Hz	CSV
	[†] Βοι	Inding	boxes, to	p-bottor	n left-	rigth c	corners.	^{\$} Piloted.	¶Autor	omou	s. '	*Stere	o. §L	eica laser	tracker.	[‡] 9300) frames.	

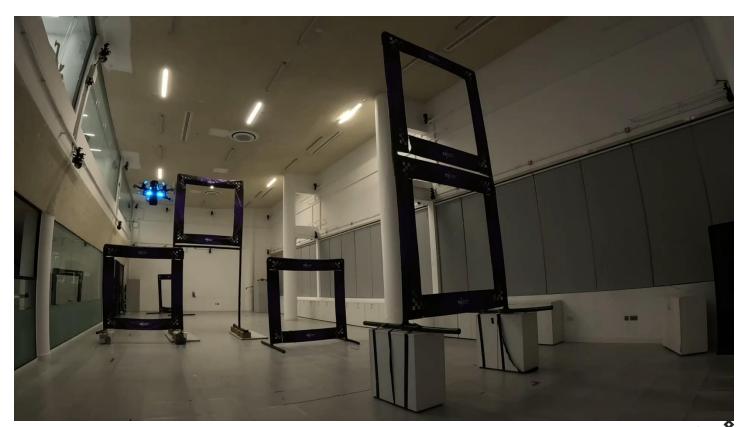
Internal corners. ^{††}Synthetic camera images. ^{¶¶}Area of interest of the gaze. ^{**}Simulated.

Our Dataset in a Nutshell

Fast (>20m/s) and aggressive quadrotor flights

Autonomous and human-piloted flights

Multiple trajectories


Visual, inertial, and motion capture data

- high-resolution
- high-frequency

Drone racing gates

- bounding boxes
- individual corner labels

Control inputs and battery voltages

Design Overview

Structure

- 5-inch carbon-fiber frame
- 215 mm of propeller-to-propeller diagonal distance
- 870g of weight

Performance capabilities

- Speeds up to 179 km/h
- High linear acceleration (69.85 m/s²)
- High angular velocity (20.01 rad/s)

Flight modes

• Suitable for both autonomous and human piloted flights

Autonomous module

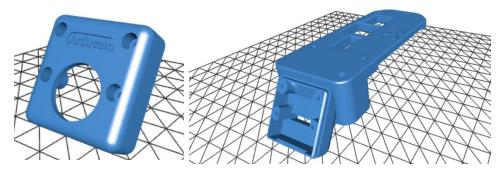
• NVIDIA Orin NX (hosted on an A203v2 carrier board with SSD and wireless card)

Sensors

- MPU6000 IMU embedded in the flight controller
- Arducam RGB camera.

Other features

- Open-source design
- Made of Commercial off-the-shelf (COTS) components



Reproducibility

Release of:

- Design of the drone used to collect the data
 - Bill of Material
 - 3D models
 - Building tutorial
- Reference controller code used for autonomous flight
- Betaflight parameters

Data collection

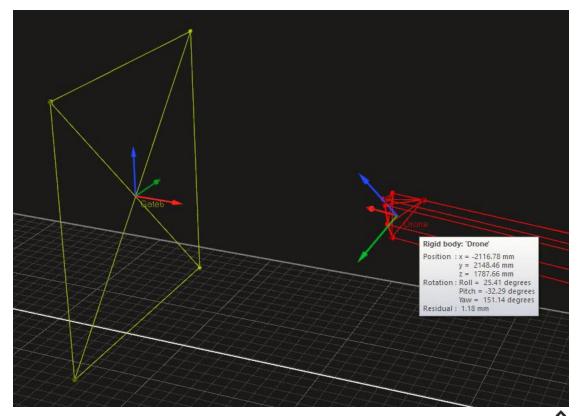
Motion capture system

Providing the ground truth for the drone (275 Hz) and the gate poses

Arducam IMX219 Bayer camera

Capturing 640x480 px images (120Hz)

Flight controller

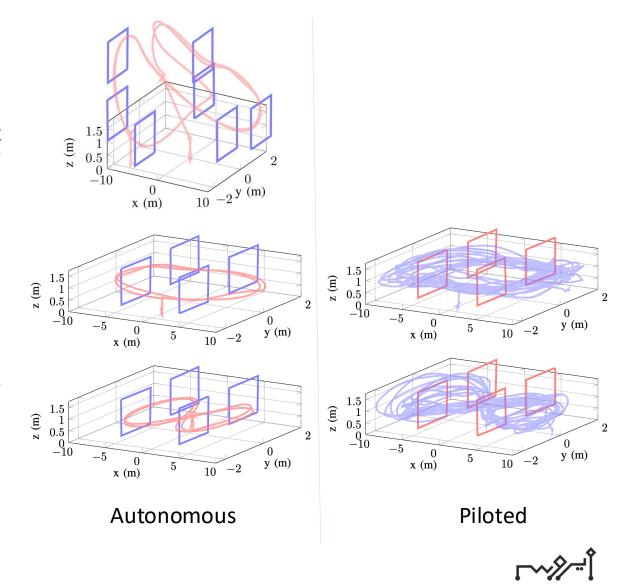

Providing IMU data (500Hz), battery voltage (50Hz), motor outputs (100Hz) and remote control inputs (100Hz)

Companion computer

Providing autonomous control references (100Hz 2D tracks, 500Hz 3D tracks) and control inputs (275Hz 2D tracks/ 160Hz 3D tracks)

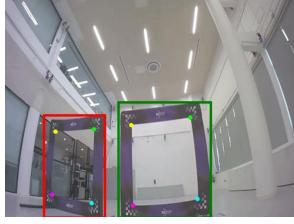
NTP server

Used to synchronize the companion computer with the motion capture system



Recorded Flights

TABLE III: Summary of the flights recorded in the dataset


Control	Shape	Top Speed	Time	Distance	
	Ellipse [†]	21.83 m/s	149.08 s	455.27 m	
Autonomous	Lemniscate [†]	10.22 m/s	155.08 s	359.63 m	
	Race Track [‡]	21.39 m/s	278.05 s	1161.51 m	
Piloted	Ellipse [§]	9.50 m/s	575.38 s	2586.3 m	
rnoteu	Lemniscate§	8.93 m/s	593.63 s	2593.47 m	

[†]Flown twice in 6 flights (3 brightness \times 2 camera settings). [‡]Flown three times in 6 flights (3 brightness \times 2 camera settings). [§]Flown as many times as possible in 6 flights (3 brightness \times 2 camera settings).

ABU DHAB

Image settings

Environment brightness

- Full light
- Artificial light
- Low light

Camera settings

- Auto exposure
 - Automatically adjusted exposure time and gains
 - Results in brighter images
 - Higher motion blur
- Fixed exposure
 - Exposure time: 2.5 ms
 - Analog gain: 2
 - Digital gain: 1
 - Results in darker images
 - Limits motion blur

Post processing

Data trimming

• Any records that occur before take-off and after landing have been removed

Data alignment

• A script is used to interpolate the data and ensure that all measurements are synchronized based on timestamps. Linear interpolation is applied to most fields, while spherical linear interpolation is used for rotation matrices.

Creation of comprehensive CSVs

- Camera-aligned CSVs
- align all the other data points with the timestamps from the camera frames
- Uniform Sampling CSVs
- sample data at a uniform frequency (500Hz) between the first and last camera timestamps.

Metadata

• Each flight folder includes a YAML metadata file summarizing important information such as camera settings, light conditions, type of track, total flight time, and distance traveled

TABLE	IV:	Data	available	in	the	precompiled
cam_ts_s	ync.c	sv and	500hz_fre	q_sy	nc.cs	v (Sec. V-A)

Column Number and Quantity Name	Unit	Data Type
0. elapsed_time	s	float
1. timestamp	μs	int
2. img_filename	n/a	string
3. accel_[\mathbf{x} \mathbf{y} \mathbf{z}]	m/s^2	float
6. $gyro_{x y z}$	rad/s	float
9. thrust[0-3]	1	float $\in [0, 1]$
13. channels_[roll pitch thrust yaw]	1	$int \in [1000, 2000]$
17. aux[1-4]	1	$int \in [1000, 2000]$
21. vbat	V	float
22. drone_[\mathbf{x} \mathbf{y} \mathbf{z}]	m	float
25. drone_[roll pitch yaw]	rad	float
28. drone_velocity_linear_[x y z]	m/s^2	float
31. drone_velocity_angular_[x y z]	rad/s	float
34. drone_residual	m	float
35. drone_rot [[0-8]]	1	float
44. gate[1-4]_int_[\mathbf{x} y z]	m	float
56.gate[1-4]_int_[roll pitch yaw]	rad	float
68. gate[1-4]-int_residual	m	float
72. gate[1-4]_int_rot[[0-8]]	1	float
108. gate[1-4]_marker[1-4]_[x y z]	m	float

Data Format

Raw data

- Rosbags
- Single CSVs

Interpolated data

- Camera-aligned
- Uniform-sampling

Images and labels

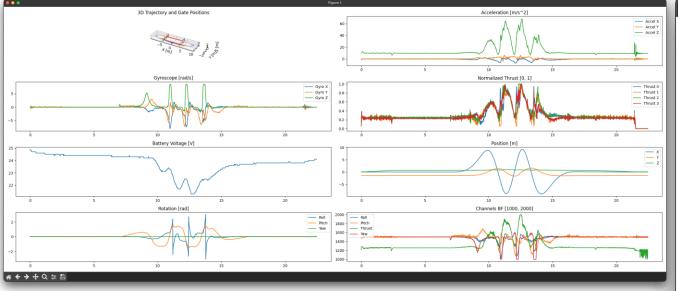
- JPEG
- TXT ($0 c_x c_y w h tl_x tl_y tl_v tr_x tr_y tr_v br_x br_y br_v bl_x bl_y bl_v$)

https://github.com/tii-racing/drone-racing-dataset/data/

- [autonomous|piloted]
 - flight-[01-12][a|p]-[ellipse|lemniscate|trackRATM]/

- csv_raw/

- ros2bag_dump/


- battery_flight-01a-ellipse.csv
- Channels_flight-01a-ellipse.csv
- *ctbr_flight-01a-ellipse.csv
- drone_state_flight-01a-ellipse.csv
- imu_flight-01a-ellipse.csv
- motors_thrust_flight-01a-ellipse.csv
- *reference_flight-01a-ellipse.csv
- camera_flight-01a-ellipse.csv
- gate_corners_flight=01a=ellipse.csv
- mocap_flight-01a-ellipse.csv
- ros2bag_flight-01a-ellipse/
- metadata.yaml
- ros2bag_flight-01a-ellipse.db3
- camera_flight-01a-ellipse.zip
- label_flight-01a-ellipse.zip
- flight-01a-ellipse_500hz_freq_sync.csv
- flight-01a-ellipse_cam_ts_sync.csv

metadata_flight-01a-ellipse.yaml

* Only in the autonomous flight folders.

Supporting Scripts

Additional Resources:

- camera_calibration
 - calibration_results.json
 - calibration_results.npz
 - drone_to_camera.json
- scripts
 - camera_calibration.py
 - create_std_bag.py.
 - data_interpolation.py
 - reference_controller.py

Camera parameters in JSON format.

- Camera parameters in NumPy format.
- Translation from the drone center to the camera
- Script used to generate the files in `camera_calibration/`.
- Script used to generate standard ROS2 bags
- Script used to generate the comprehensive CSV files interpolated at arbitrary frequencies.
- PID controller used for the autonomous flights.

Race Against the Machine

A Fully-annotated, Open-design Dataset of Autonomous and Piloted High-speed Flight

BY

Thank

you!

ALCHOND

Times

