Li-Ion Batteries State-of-Charge Estimation Using Deep LSTM at Various Battery Specifications and Discharge Cycles

Kei Long Wong, **Michael Bosello**, Rita Tse, Carlo Falcomer, Claudio Rossi, Giovanni Pau

澳門理工學院 Instituto Politécnico de Macau Macao Polytechnic Institute

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Lithium Batteries

Battery technology is one key enabler for the green energy transition

• Everything that can be electrified will be electrified within a decade (according to EU)

Li-ion battery is the most popular power supply of EV

- high energy density
- long lifespan
- lightweight
- low self-discharge rate

Battery Management Systems (BMS) ensure security and reliability

State of Charge (SOC)

$$SOC = \frac{Q_t[Ah]}{Q_0[Ah]} \cdot 100(\%)$$

Estimating SOC is one of the core duty of the BMS

The BMS adjust its functioning according to the estimated SOC

A robust SOC estimation

- Ensure battery reliability
- Prevent failures and hazards
- Prevent over-charge and overdischarge
- Informs the user about the charge

SOC Estimation

It cannot be measured

Proposed Method

Deep(er) LSTM — able to learn the SOC trend

- Time series as input: voltage (V), current (I), and temperature (T)
 - V, I, T are measurable and related to SOC
- Use of two high-quality wide datasets
 - One with original data from real batteries collected by UNIBO
 - One publicly available

Related works

- Some works already used LSTMs for SOC estimation
 - Their datasets contain only one or a few batteries with one setup

Datasets

• UNIBO Powertools Dataset (first publication)

- 27 batteries cycled in laboratory
- CC-CV Discharge, three tests: standard, high current, pre-conditioned
- Different manufacturers
- Several nominal capacities
- Cycling is performed until the cell's end of life
 - Useful to assess how SOC is affected by the cell's age
 - Useful to validate the model under different health status
- LG 18650HG2 Li-ion Battery Data
 - One battery tested
 - At different temperatures
 - With several driving profiles

Recurrent Neural Networks and Long-Short Term Memory

Credits: https://colah.github.io

Model for UNIBO Data

Model for LG Data

Results: UNIBO Powertools Dataset

Testing on 1 cell for each test type and nominal capacity (20 train, 7 test)
MAE: 0.69%, RMSE: 1.34%

MAE < 0.6%, RMSE < 0.8% for all test type but two (not having enough data)</p>

✓ SOC accurately estimated under different **battery health statuses**

Results: LG 18650HG2 Li-ion Battery Data

- Training on 6 mixed driving cycle for each temperature
- Testing on UDDS, LA92, US06 + 1 mixed driving for each temperature
- Different time series lengths tested the best is 300 step \sim 50sec

✓ MAE: 1.47%, RMSE: 1.99%

✓ SOC accurately estimated under different temperatures (0°C, 10°C, and 25°C)

Thank you

• Code

https://github.com/KeiLongW/battery-state-estimation

- UNIBO Powertools Dataset <u>https://data.mendeley.com/datasets/n6xg5fzsbv/1</u>
- Contact <u>michael.bosello@unibo.it</u>