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Introduction

Autonomous cars

Driving is still a complex task for artificial agents

Three problems
Recognition Identify environment’s component

Prediction Predict the evolution of the surrounding

Planning Take decisions and act to pursue the goal
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Introduction

Current status in vehicle automation (credits to SAE & NHTSA)
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Introduction

Level 5

Full autonomous
Predicting all possible scenarios

I known
I unknown

Current approaches by major players
Wide range of sensors

Very high definition multi-layer maps

Supervised learning

Robotic drivers are expected to be perfect

Drawbacks
Manufacturing costs Expensive sensors

Operational costs Constant need of data-updates

Training data Huge amounts of labeled data or human effort

Covering all possible driving scenarios is very hard
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Introduction

Reinforcement learning for autonomous driving

Unsupervised learning
Learns behaviors by trial-and-error

I like a young human driving students

Does not require explicit supervision from humans.

Mainly used on simulated environment
I to avoid consequences in real-life

An agent trained in a virtual environment will not perform well in the real setting
I different visual appearance, especially for textures
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idea

Reinforcement learning in the physical world

Depart from the assumption of infallible self-driving vehicles
I Granting some time to learn how to drive in certain scenarios

Use of realistic small-scale cars models
I the agent still faces challenges of a real driving scene
I inexpensive
I safe

We used Deep Q-Network (DQN) to understand the feasibility of the approach
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Reinforcement Learning Basics

Agent-environment interaction

In Reinforcement Learning (RL), an agent learns how to fulfill a task by interacting
with its environment

The interaction between the agent and the environment can be reduced to three
signals

Signals
State Every information about the environment useful to predict the future

Action What the agent do

Reward A real number that Indicates how well the agent is doing

Policy
A map from states to actions used by the agent to choose next action

Episode
A complete run from one of the initial states to a final state
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Reinforcement Learning Basics

Learning a policy

The agent wants to maximize the cumulative reward

Cumulative reward
The sum of rewards over time

A way to produce a policy is to estimate the action-value function
I given the function, the agent needs only to perform the action with the greatest value

Action-value function
(state, action) → expected return (the expectation of future rewards)

The exploration/exploitation dilemma
The agent has to behave optimally but it needs to explore the environment to
improve

ε-greedy policy: the agent behave greedily but there is a (small) ε probability to
select a random action.
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Reinforcement Learning Basics

Deep Q-Network

Q-learning
Is an algorithm that approximate the action-value function

At every iteration the estimation is refined thanks to the new experience.

Every time the evaluation becomes more precise, the policy gets closer to the
optimal one.

DQN
When the number of states increases, it become impossible to use a table to store
the Q-function

A neural network can approximate the Q-function
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Reinforcement Learning Basics

Q-learning example

Formula
Q(St, At)← Q(St, At) + α[Rt+1 + γmaxaQ(St+1, a)−Q(St, At)]

State Action Expected Reward
State 0 left 0.6
State 0 right 0.5

↓ left

State Action Expected Reward
State 0 left 0.4
State 0 right 0.5

Q(S0, left)← 0.6 + 0.2[−1 + 1 ∗ 0.6− 0.6]
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Approach

Hardware setup

The cars
Mainboard: Jetson Nano

I designed to enable embedded AI
I train neural networks in real-time.

Front-facing wide-angle camera.
I to obtain an ample field of view

Three frontal IR distance sensors

Two rear IR distance sensors

Two line sensors to the right and left.
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Approach

Circuit
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Approach

RL environment I

State
Two subsequent camera frames form the state

I decisions are based solely on the raw pixel
I two frames allow to detect movements

Action
Go forward

Turn right

Turn left

Brake

Episode
An episode ends when the car crashes
The car goes backward until

I all the front sensors turn off
I the back sensors reveal an obstacle

Then, a new episode of training starts
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Approach

RL environment II

Reward
Based on agent’s actions and sensors value

I After training, the agent can foresee the sensors values

Clipped between [-1, 1] because of learning efficiency [Mnih et al., 2013]

Forward movement = 0.9
I Incentive to run along the circuit

Turning = 0.2

Brake = 0
Collision = -1

I frontal sensor activation
Line sensor activation = -0.3

I to keep a smoother path
Turning to a direction and just after turning to the opposite one = -0.2

I to reduce oscillations
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Driver Agent Software

Driver agent software I

Two parts

Neural network

Training cycle
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Driver Agent Software

Driver agent software II
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Driver Agent Software

Driver agent software III

Experience replay is needed to break temporal relation

Transaction samples are used to compute the expected reward which is needed to
do training
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Driver Agent Software

Software

Implementation available on GitHub
https://github.com/MichaelBosello/Self-Driving-Car

Includes trained models

Dataset
Produced as a result of the experiment

Contains the videos of the car’s camera with timestamped event logs

Available in the repo
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Conclusions

Conclusions

Results
The driver-agent successfully learned a control policy

I to drive in two circuits
I only using raw pixels

⇒ DQN can operate in physical environments

Evaluation
The plot shows the sum of rewards for
ten episodes in the evaluation phase

The evaluation phase is interleaved
with training

The X-axis indicates the number of
training episodes before the
considered evaluation run
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Conclusions

Results demo

[https://youtu.be/pAwzMXldfss]

M. Bosello, R. Tse, G. Pau Learning to Drive by Trial & Error MSN 2019 27 / 38

https://youtu.be/pAwzMXldfss


Future Works

Next in line...

1 Introduction

2 idea

3 Reinforcement Learning Basics

4 Approach

5 Driver Agent Software

6 Conclusions

7 Future Works

8 Demo

9 Related Works

M. Bosello, R. Tse, G. Pau Learning to Drive by Trial & Error MSN 2019 28 / 38



Future Works

Future works

Instrumenting the small-scale vehicles with LiDAR

Training the agent in realistic small-scale urban scenarios

Adding more sensory data

Transfer learning from small-scale vehicles to actual vehicles in a controlled
environment
Cooperative learning

I exchange of experience between cars with efficient communication [Kamp et al., 2018]
Reinforcement learning with bounded risk [Geibel, 2001]

I find the optimal policy with bounded risk
I risk as the probability to enter in a fatal state

Safe reinforcement learning [Shalev-Shwartz et al., 2016]
I ensure functional safety through hard constrains
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Demo

Results demo

youtu.be/pAwzMXldfss
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Related Works

Related works I

End-to-end framework [Sallab et al., 2017]
The input is the environment’s state

The output is the driving action

Splitting the task into two modules [Li et al., 2019]
The perception module uses DL to extract the track features

The control module uses RL to make decisions

Both the works used TORCS, an open-source car racing simulator

Use of DQN as is [Yu et al., 2016]
In a racing game.

Transfer learning from a virtual world to the real one [You et al., 2017]
The framework converts the images rendered by the simulator to realistic ones

The agent is trained on those synthesized scene
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Related Works

Related Works II

Donkey Car [don, 2019]
Self-driving small robotic car

Uses deep learning to mimic the trajectories provided by the user
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Related Works

Feedback and cooperation

Anyone who is interested in this research line that wants to
I discuss
I cooperate with us
I give feedback

can contact
Michael michael.bosello@studio.unibo.it

Me giovanni.pau@unibo.it

Any questions?
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