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Machine Learning Introduction

Machine Learning I

A ML algorithm is an algorithm that is able to learn from data

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E”

[Mitchell, 1997]

It is essentially a form of applied statistics
Enables us to tackle tasks that are too difficult to solve with fixed programs

I Use it only when no closed-form solution is available/applicable
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Machine Learning Introduction

Machine Learning II

Experience E

Set of examples

An example is a collection of features

An example is represented as a vector

Performance P

Quantitative measure like accuracy

Task T

We are interested in:

Classification Regression Time series forecasting

→ Supervised Learning
I each example is associated with a target
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Machine Learning Introduction

Machine Learning III

Algorithm Components
Model

I parametric mathematical model
Optimization algorithm

I that will improve the weights in a way that reduces error
Cost function

I e.g. MSE, negative log-likelihood
Dataset

I training examples

We can replace any of these components mostly independently
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Machine Learning Introduction

Machine Learning IV

Generalization
It is the ability to perform well on previously unobserved inputs

It is what separates machine learning from optimization
How can we affect performance on the test set when we can observe only the
training set?

I We typically make a set of assumptions known as the i.i.d. (independent and identically
distributed)

I The examples are independent of each other
I The training set and test set are drawn from the same probability distribution

Applaying ML
We have to:

choose the features perform data pre-processing choose the model/algorithm

hyperparameters
Algorithm’s settings

Hyperparameter tuning: “more an art than a science”
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Neural Networks

Artificial Neural Networks

The goal of a network is to approximate some function f∗ ; y = f∗(x)

The network defines a mapping y = f(x; θ)

It learns the value of the parameters θ that result in the best approximation
A directed acyclic graph describes how functions are connected together

Acyclic←→ Feedforward
Functions connected in a chain (vector-to-vector function)
Sets of neurons organized in layers (vector-to-scalar function)
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Neural Networks

Artificial Neural Networks II

The Activation function should be nonlinear
Example: Rectified linear function g(z) = max0, z

Training
SGD Improve f by moving in small steps with opposite sign of the derivative

Backpropagation A method to compute gradient efficiently

Nonlinearity
Manually engineering a nonlinear mapping is very difficult

Deep learning learns the mapping thanks to the hidden layers
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Techniques

Fully Connected Network
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Techniques

Convolutional Neural Network

Assumptions on data allow reducing the number of parameters

CNNs perform better on structured and spatially related data

Neurons arranged in N-dimensional volumes

Layers of a ConvNet transforms one volume of activations to another
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Techniques

Convolution Layer

The Conv layer’s parameters consist of a set of learnable filters
Every filter is small spatially but extends through the full depth of the input volume
we slide (convolve) each filter across the width and height of the input volume
The activation map gives the responses of a filter at every spatial position
Filters’ responses are stacked along the depth producing the output volume

neurons are connected only to a local region in the input

neurons in a filter share parameters
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Techniques

Pool Layer

It performs a downsampling operation along the spatial dimensions

Reduce spatial size/parameters

Controls overfitting
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Techniques

Recurrent NN

RNNs allow information to persist

Good for sequences

They can retain only recent information
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Techniques

Long Short-Term Memory Networks I

A special kind of RNN

Capable of learning long-term dependencies
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Techniques

Long Short-Term Memory Networks II

Cell state layer

It’s very easy for information to just flow along it unchanged (long term)

Removing or adding information to the cell state is carefully regulated by
structures called gates

Weights of gates regulate memorization
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Techniques

Long Short-Term Memory Networks III

Forget gate layer

Sigmoid output in [0, 1]

For each element in the cell state
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Techniques

Long Short-Term Memory Networks IV

Input gate layer

Tanh layer creates a vector of new candidate values
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Techniques

Long Short-Term Memory Networks V

Update
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Techniques

Long Short-Term Memory Networks VI

Output

Only one part of the cell is given
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Techniques

Time Series

Feedforward Recurrent NN Autoregressive

Data windowing
I Deciding the width (number of time steps) of the input and output
I Deciding the time offset between them
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Techniques

Why ML?

Why NNs for SoC/SoH?
Less computationally expensive than other algorithms

No model engineering

Generalization

Nonlinear

Why NNs for TS forecasting?
Growing evidence suggests that machine learning approaches offer a superior
modeling methodology to tackle time-series
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Techniques

Other techniques

Meta-learning
A model is trained on a set of (correlated) tasks

Two gradient descent phases

The model generalizes to other tasks without re-training

Bayesian Network (Belief Network)
Directed Acyclic Graph

Nodes are random variables

Structure/parameters could be learned from data

Dynamic Bayesian network is the extension to time series

Decision graphs handle decision making under uncertainty
Hidden Markov Model

I Special case
I A process Y depends on X which is unobservable

ARIMA (time series model)
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Appendix: References

References Index I

Introduction to ML and ANNs [Goodfellow et al., 2016]
CNNs

I https://cs231n.github.io/convolutional-networks/
I [Krizhevsky et al., 2012]

LSTM
I https://colah.github.io/posts/2015-08-Understanding-LSTMs/
I [Hochreiter and Schmidhuber, 1997]

Model Agnostic Meta-Learning [Finn et al., 2017]
Model Bayesian Networks [Russell and Norvig, 2009] Chapters:

I 14 – Probabilistic Reasoning
I 15 – Probabilistic Reasoning over Time
I 20 – Learning Probabilistic Models
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Appendix: References

References Index II

Review of SoC/SoH estimation using ML [Vidal et al., 2020]

Time series forecasting
I Review of ANNs methodologies for TS [Tealab, 2018]
I TS forecasting using meta-learning [Oreshkin et al., 2020]
I TS forecasting using LSTM [Hua et al., 2019] [Guo et al., 2016]
I TS classification using CNN [Zhao et al., 2017]
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