
Autonomous Driving and Reinforcement Learning – an Introduction

Michael Bosello
michael.bosello@studio.unibo.it

Università di Bologna – Department of Computer Science and Engineering, Cesena, Italy

Smart Vehicular Systems A.Y. 2019/2020

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 1 / 30

michael.bosello@studio.unibo.it

Outline

1 The Driving Problem
Single task approach
End-to-end approach
Pitfalls of Simulations

2 Reinforcement Learning Basic Concepts
Problem Definition
Learning a Policy

3 Example of a Driving Agent: DQN
Neural Network and Training Cycle
Issues and Solutions

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 2 / 30

The Driving Problem

Next in Line...

1 The Driving Problem
Single task approach
End-to-end approach
Pitfalls of Simulations

2 Reinforcement Learning Basic Concepts
Problem Definition
Learning a Policy

3 Example of a Driving Agent: DQN
Neural Network and Training Cycle
Issues and Solutions

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 3 / 30

The Driving Problem

Self-Driving I

Goals
Reach the destination
Avoid dangerous states
Provide comfort to passengers (e.g. avoid oscillations, sudden moves)

Settings
Multi-agent problem

I One have to consider others
Interaction is both

I Cooperative, all the agents desire safety
I Competitive, each agent has its own goal

Environment
I Non-deterministic
I Partially observable
I Dynamic

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 4 / 30

The Driving Problem

Self-Driving II

Three sub-problems
Recognition Identify environment’s components

Prediction Predict the evolution of the surrounding
Decision making Take decisions and act to pursue the goal

Two approaches
Single task handling

I Use human ingenuity to inject knowledge about the domain
End-to-end

I Let the algorithm optimize towards the final goal without constrains

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 5 / 30

The Driving Problem

Self-Driving III

Figure: Modules of autonomous driving systems (source [Talpaert et al., 2019] - modified)

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 6 / 30

The Driving Problem

Sensing & Control

Sensing
Which sensors?
Single/multiple
Sensor expense
Operating conditions

Control
Continuous – steering, acceleration, braking
Discrete – forward, right, left, brake

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 7 / 30

The Driving Problem Single task approach

Recognition

Convolutional Neural Networks (CNNs)
I YOLO [Redmon et al., 2015]

Computer Vision techniques for object detection
I Feature based
I Local descriptor based

Mixed

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 8 / 30

The Driving Problem Single task approach

Prediction

Model-based
I Physics-based
I Maneuver-based
I Interaction-aware

Data-driven
I Recurrent NN (like Long-Short Term Memory LSTM)

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 9 / 30

The Driving Problem Single task approach

Decision Making

Planning/Tree Search/Optimization
Agent-oriented programming (like the BDI model)
Deep Learning (DL)
Reinforcement Learning (RL)

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 10 / 30

The Driving Problem End-to-end approach

End-to-end

Supervised Learning
Based on imitation
Current approach by major car manufacturer
Robotic drivers are expected to be perfect

Drawbacks
Training data Huge amounts of labeled data or human effort

Covering all possible driving scenarios is very hard

Unsupervised Learning
Learns behaviors by trial-and-error

I like a young human driving student

Does not require explicit supervision from humans.

Mainly used on simulated environment
I to avoid consequences in real-life

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 11 / 30

The Driving Problem Pitfalls of Simulations

Simulations

Keep in mind
An agent trained in a virtual environment will not perform well in the real setting

I For cameras: different visual appearance, especially for textures
I You need some kind of transfer learning or conversion of images/data

Always enable noises of sensors/actuators
Some “grand truth” sensors present in some simulators aren’t available in real life

I For example, in TORCS (a circuit simulator popular in the ML field) you can have exact
distances from other cars and from the borders. Too easy...

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 12 / 30

Reinforcement Learning Basic Concepts

Next in Line...

1 The Driving Problem
Single task approach
End-to-end approach
Pitfalls of Simulations

2 Reinforcement Learning Basic Concepts
Problem Definition
Learning a Policy

3 Example of a Driving Agent: DQN
Neural Network and Training Cycle
Issues and Solutions

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 13 / 30

Reinforcement Learning Basic Concepts Problem Definition

Agent-environment interaction

In RL, an agent learns how to fulfill a task by interacting with its environment
The interaction between the agent and the environment can be reduced to:

State Every information about the environment useful to predict the future
Action What the agent do

Reward A real number that Indicates how well the agent is doing

Figure: At each time step t the agent perform an action At and receives the couple St+1, Rt+1
(source [Sutton and Barto, 2018])

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 14 / 30

Reinforcement Learning Basic Concepts Problem Definition

Terminology

Episode
A complete run from a starting state to a final state

Episodic task A task that has an end
Continuing task A task that goes on without limit

We can split it e.g. by setting a maximum number of steps

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 15 / 30

Reinforcement Learning Basic Concepts Problem Definition

Markov Decision Process (MDP)

A RL problem can be formalized as a MDP. The 4-tuple:
S set of states

As set of actions available in state s
P (s0|s, a) state-transition probabilities (probability to reach s0 given s and a)
R(s, s0) reward distribution associate to state transitions

Figure: Example of a simple MDP (source Wikipedia)

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 16 / 30

Reinforcement Learning Basic Concepts Problem Definition

Environment features

MDPs can deal with non-deterministic environments
(because they have probability distributions)
But we need to cope with observability

Markov Property – Full observability
Classical RL algorithms rely on the Markov property
A state satisfy the property if it includes information about all aspects of the (past)
agent-environment interaction that make a difference for the future

From states to observations – Partial observability
Sometimes, an agent has only a partial view of the world state
The agent gets information (observations) about some aspects of the environment
Abusing the language, observations/history are called “state” and symbolized St

How to deal with partial observability?
Approximation methods (e.g. NN) doesn’t rely on the Markov property
Sometimes we can reconstruct a Markov state using a history

I Stacking the last n states
I Using a RNN (e.g. LSTM)

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 17 / 30

Reinforcement Learning Basic Concepts Learning a Policy

Learning a Policy I

We want the agent to learn a strategy i.e. a policy

Policy ⇡

A map from states to actions used by the agent to choose the next action

In particular, we are searching for the optimal policy
! The policy that maximize the cumulative reward

Cumulative reward
The discounted sum of rewards over time

R =
nX

t=0

�trt+1 | 0 � 1

For larger values of �, the agent focuses more about the long term rewards
For smaller values of �, the agent focuses more about the immediate rewards

What does this mean?
The actions of the agent affect its possibilities later in time
It could be better to choose an action that led to a better state than an action that
gives you a greater reward but led to a worse state

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 18 / 30

Reinforcement Learning Basic Concepts Learning a Policy

Learning a Policy II

Problem
we don’t know the MDP model (state transition probabilities and reward distribution)

Solution
Monte Carlo approach: let’s make estimations based on experience

A way to produce a policy is to estimate the value (or action-value) function
I given the function, the agent needs only to perform the action with the greatest value

Expected return E[Gt]

The expectation of cumulative reward i.e. our current estimation

Value function V⇡(s) = E[Gt|St = s]

(state) ! expected return when starting in s and following ⇡ thereafter

Action-value function Q⇡(s, a) = E[Gt|St = s,At = a]

(state, action) ! expected return performing a and following ⇡ thereafter

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 19 / 30

Reinforcement Learning Basic Concepts Learning a Policy

Learning a Policy III

SARSA and Q-learning
They are algorithms that approximate the action-value function
At every iteration the estimation is refined thanks to the new experience.
Every time the evaluation becomes more precise, the policy gets closer to the
optimal one.

Generalized Policy Iteration (GPI)

Almost all RL methods could be described as GPI
I They all have identifiable policies and value functions

Learning consist of two interacting processes
Policy evaluation Compute the value function
Policy improvement Make the policy greedy

Figure: [Sutton and Barto, 2018]

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 20 / 30

Reinforcement Learning Basic Concepts Learning a Policy

Learning a policy IV

The exploration/exploitation dilemma
The agent seeks to learn action values of optimal behavior, but it needs to behave
non-optimally in order to explore all actions (to find the optimal actions)
"-greedy policy: the agent behave greedily but there is a (small) " probability to
select a random action.

On-policy learning
The agent learns action values of the policy that produces its own behavior (q⇡)
It learns about a near-optimal policy ("-greedy)
Target policy and behavior policy correspond

Off-policy learning
The agent learns action values of the optimal policy (q⇤)
There are two policies: target and behavior
Every n steps the target policy is copied into the behavior one

I If n = 1 there is only one action-value function
I But it’s not the same of on-policy (the target and behavior policy still not correspond)

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 21 / 30

Reinforcement Learning Basic Concepts Learning a Policy

How to estimate the value function?

A table that associate state (or state-action pairs) to a value
Randomly initialized

Temporal Difference (TD) update
V (St) V (St) + ↵[Rt+1 + �V (St+1)� V (St)]

TD error
�t = Rt+1 + �V (St+1)� V (St)

Rt+1 + �V (St+1) is a better estimation of V (St)
I The actual reward obtained plus the expected rewards for the next state

By subtracting the old estimate we get the error made at time t

Sarsa (on-policy)
Q(St, At) Q(St, At) + ↵[Rt+1 + �Q(St+1, At+1)�Q(St, At)]

Q-learning (off-policy)
Q(St, At) Q(St, At) + ↵[Rt+1 + �maxa Q(St+1, a)�Q(St, At)]

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 22 / 30

Example of a Driving Agent: DQN

Next in Line...

1 The Driving Problem
Single task approach
End-to-end approach
Pitfalls of Simulations

2 Reinforcement Learning Basic Concepts
Problem Definition
Learning a Policy

3 Example of a Driving Agent: DQN
Neural Network and Training Cycle
Issues and Solutions

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 23 / 30

Example of a Driving Agent: DQN Neural Network and Training Cycle

Deep Q-Network

DQN
When the number of states increases, it becomes impossible to use a table to
store the Q-function (alias for action-value function)
A neural network can approximate the Q-function
We also get better generalization and the ability to deal with non-Markovian envs

How to represent the action-value function in a NN?
1 Input: the state (as a vector)! Output: the values of each action
2 Input: the state and an action! Output: the value for that action

Design the driver agent
Environment: states and actions, reward function
Neural network
Training cycle

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 24 / 30

Example of a Driving Agent: DQN Neural Network and Training Cycle

Neural Network

Pre-processing
It’s important how we present the data to the network
Let’s take images as an example

I Resize to small images (e.g. 84x84)
I If colors are not discriminatory, use grayscale
I How many frames to stack?
I Remember: the larger the input vector, the larger the searching space

Convolutional Neural Networks
A good idea for structured/spatially local data

I e.g. images, lidar data ...

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 25 / 30

Example of a Driving Agent: DQN Neural Network and Training Cycle

Training Cycle

Transaction samples are used to compute the target update
Training use a gradient form of Q-learning
([Mnih et al., 2013] and [Sutton and Barto, 2018] for details)

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 26 / 30

Example of a Driving Agent: DQN Issues and Solutions

DQN Issues and Solutions I
Each of these features significantly improve performance

Experience Replay
We put samples in a buffer and we take random batches from it for training
When full, oldest samples are discarded
Why? Experience replay is needed to break temporal relation

I In supervised learning, inputs should be independent and identically distributed (i.i.d.)
i.e. the generative process have no memory of past generated samples

Other advantages:
I More efficient use of experience (samples are used several times)
I Avoid catastrophic forgetting (by presenting again old samples)

Double DQN
We have two networks, one behavior NN and one target NN
We train the target NN
Every N steps we copy the target NN into the behavior one
Why? To reduce target instability

I Supervised learning to perform well requires that for the same input a label does not
change over time

I In RL, the target change constantly (as we refine the estimations)

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 27 / 30

Example of a Driving Agent: DQN Issues and Solutions

DQN Issues and Solutions II

Rewards scaling
Scaling rewards in the range [�1; 1] dramatically improves efficiency [Mnih et al., 2013]

Frame skipping
Consequent frames are very similar! we can skip frames without loosing much
information and speed up training by N times
The selected action is repeated for N frames

Initial sampling
It could be useful to save K samples in the replay buffer before start training

So many parameters...
[Mnih et al., 2015] is a good place to start

I The table of hyperparameters used in their work is in the next slide

More recent works and experiments could provide better suggestions

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 28 / 30

Example of a Driving Agent: DQN Issues and Solutions

Hyperparameters used in [Mnih et al., 2015]

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 29 / 30

Example of a Driving Agent: DQN Issues and Solutions

Last things

Reward function
Designing a reward function is not an easy task
It could severely affect learning
In the case of a driving agent (like in RL for robotics), the rewards are internal and
doesn’t come from the environment
You should give rewards also for intermediate steps to direct the agent (i.e. not
only +1 when successful and �1 when it fails)
Some naive hints

I Reach target +1
I Crash �1
I Car goes forward +0.4 (if too big it will inhibit crash penalty)
I Car turns +0.1 (if too big it will keep circle around)
I �0.2 instead of the positive reward if the agent turns to a direction and just after it turns

to the opposite one (i.e. right-left or left-right) to reduce car oscillations

Exploration/exploitation
Start with a big "

Gradually reduce it with an "-decay (e.g. 0.999)
"t+1 = "t ⇤ decay

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 30 / 30

Appendix: Reading Suggestions

Appendix: Reading Suggestions

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 31 / 30

Appendix: Reading Suggestions

Reading Suggestions: Access to Resources

Books and papers are available through the university proxy
Search engine: https://sba-unibo-it.ezproxy.unibo.it/AlmaStart
If you want to access an article by link
converts dots in scores and add .ezproxy.unibo.it at the end of the url e.g:
https://www.nature.com/articles/nature14236

#
https://www-nature-com.ezproxy.unibo.it/articles/nature14236

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 32 / 30

https://sba-unibo-it.ezproxy.unibo.it/AlmaStart
https://www.nature.com/articles/nature14236
https://www-nature-com.ezproxy.unibo.it/articles/nature14236

Appendix: Reading Suggestions

Reading Suggestions: Driving Problem

Extended review of autonomous driving approaches [Leon and Gavrilescu, 2019]
Overview of RL for autonomous driving and its challenges [Talpaert et al., 2019]
Tutorial of RL with CARLA simulator https://pythonprogramming.net/
introduction-self-driving-autonomous-cars-carla-python

End-to-end approach examples
CNN to steering on a real car [Bojarski et al., 2016]
DQN car control [Yu et al., 2016]

Single task approach example
NN for recognition + RL for control [Li et al., 2018]

Converting virtual images to real one
[Pan et al., 2017]

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 33 / 30

https://pythonprogramming.net/introduction-self-driving-autonomous-cars-carla-python
https://pythonprogramming.net/introduction-self-driving-autonomous-cars-carla-python

Appendix: Reading Suggestions

Reading Suggestions: RL & DL

In depth (books)
[Sutton and Barto, 2018] is the bible of RL – the second version (2018) contains
also recent breakthroughs
[Goodfellow et al., 2016] for Deep Learning

Compact introductions
Briefly explanation of RL basics and DQN: https://rubenfiszel.github.
io/posts/rl4j/2016-08-24-Reinforcement-Learning-and-DQN
CNN: https://cs231n.github.io/convolutional-networks/

I Even more compact: https://pathmind.com/wiki/convolutional-network

DQN
[Mnih et al., 2015] Revised version (better)
[Mnih et al., 2013] Original version
[van Hasselt et al., 2015] Double Q-learning

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 34 / 30

https://rubenfiszel.github.io/posts/rl4j/2016-08-24-Reinforcement-Learning-and-DQN
https://rubenfiszel.github.io/posts/rl4j/2016-08-24-Reinforcement-Learning-and-DQN
https://cs231n.github.io/convolutional-networks/
https://pathmind.com/wiki/convolutional-network

References

References I

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., and Zieba, K. (2016).
End to end learning for self-driving cars.

Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep Learning.
MIT Press.
http://www.deeplearningbook.org.

Leon, F. and Gavrilescu, M. (2019).
A review of tracking, prediction and decision making methods for autonomous
driving.

Li, D., Zhao, D., Zhang, Q., and Chen, Y. (2018).
Reinforcement learning and deep learning based lateral control for autonomous
driving.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013).
Playing atari with deep reinforcement learning.

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 35 / 30

http://www.deeplearningbook.org

References

References II

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015).
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

Pan, X., You, Y., Wang, Z., and Lu, C. (2017).
Virtual to real reinforcement learning for autonomous driving.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2015).
You only look once: Unified, real-time object detection.

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. (2017).
Deep reinforcement learning framework for autonomous driving.
Electronic Imaging, 2017(19):70–76.

Sutton, R. S. and Barto, A. G. (2018).
Reinforcement learning : an introduction.
The MIT Press.

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 36 / 30

References

References III

Talpaert, V., Sobh, I., Kiran, B. R., Mannion, P., Yogamani, S., El-Sallab, A., and
Perez, P. (2019).
Exploring applications of deep reinforcement learning for real-world autonomous
driving systems.

van Hasselt, H., Guez, A., and Silver, D. (2015).
Deep reinforcement learning with double q-learning.

Yu, A., Palefsky-Smith, R., and Bedi, R. (2016).
Deep reinforcement learning for simulated autonomous vehicle control.
Course Project Reports: Winter, pages 1–7.

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 37 / 30

Autonomous Driving and Reinforcement Learning – an Introduction

Michael Bosello
michael.bosello@studio.unibo.it

Università di Bologna – Department of Computer Science and Engineering, Cesena, Italy

Smart Vehicular Systems A.Y. 2019/2020

Michael Bosello Autonomous Driving and RL – an introduction SVS 2020 38 / 30

michael.bosello@studio.unibo.it

	The Driving Problem
	Single task approach
	End-to-end approach
	Pitfalls of Simulations

	Reinforcement Learning Basic Concepts
	Problem Definition
	Learning a Policy

	Example of a Driving Agent: DQN
	Neural Network and Training Cycle
	Issues and Solutions

	Appendix: Reading Suggestions
	References
	

