Rospy

Michael Bosello michael.bosello@unibo.it

ALMA MATER STUDIORUM Università di Bologna

Smart Vehicular Systems A.Y. 2021/2022

- We will see the basics of rospy publish/subscribe
- Check out the documentation for additional functions/parameters

Rospy: the ROS client library for Python

How to create a Node in Pyhton

- Ensure the node is started as a Python script
 - The python file <u>must</u> start with:

#!/usr/bin/env python

• Import rospy

import rospy

- Initialize the node
 - You can call this function only once
 - Name should be unique

rospy.init_node('node_name')

Publisher

Import the message type

from ackermann_msgs.msg import AckermannDriveStamped

- Create the publisher
 - Queue size 0 is infinite, be careful

drive_pub = rospy.Publisher('/nav', AckermannDriveStamped, queue_size=0)

• Create a message

ack_msg = AckermannDriveStamped()
ack_msg.drive.speed = 0.5
ack_msg.drive.steering_angle = 0

• Send the message

drive_pub.publish(ack_msg)

Subscriber

• Import the message type

from sensor_msgs.msg import LaserScan

• Create a callback

def lidar_callback(lidar_data):
 for i in range(len(lidar_data.ranges)):
 #do something

• Create the subscriber

lidar_subscriber = rospy.Subscriber("scan", LaserScan, lidar_callback)

Node Cycle

• Cycle until shutdown is requested

while not rospy.is_shutdown():
#do/pub something

• Spin() sleeps until is_shutdown is True

#setup callbacks
rospy.spin()

Lab Exercise 1

- Automatic Emergency Braking (see next slide)
 - Create a package
 - Create a node that takes the Lidar ranges, computes the time-to-collision, and stops the car if it is below a threshold
 - Build and run the package

Automatic Emergency Braking: TTC

Time-to-collision

• TTC is the time it would take for the ego-vehicle and an object to interchept one another given that they maintain current heading and velocity

$$TTC_{i}(t) = \frac{r_{i}(t)}{\left[v_{x}(t)cos(\theta_{i})\right]_{+}}$$

Where:

- r_i is the distance measured by beam i
- v_x is the forward speed
- θ_i is the angle of beam i
- [] _ is the operator $\max(x, 0)$

When the TTC of one of the beams is below a safety threshold: Brake

The denominator is the rangerate which is the time derivative of distance (projecting the velocity onto the vector)

Lab Exercise 2

Pick one:

• Wall Following

https://f1tenth-coursekit.readthedocs.io/en/stable/assignments/labs/lab3.html

• Follow The Gap

https://f1tenth-coursekit.readthedocs.io/en/stable/assignments/labs/lab4.html

- Read the text and implement the node
 - Ignore "Deliverables and Submission" as we do not grade the lab exercises