ROS: Robot Operating System

Michael Bosello

michael.bosello@unibo.it

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Smart Vehicular Systems AY. 2021/2022

©
Acknowledgements @

Thanks to Prof. Madhur Behl from University of Virginia
* for some of the slides and illustrations

https://linklab-uva.github.io/autonomousracing/

https://linklab-uva.github.io/autonomousracing/

Robot Operating System

‘Is a set of software libraries and tools
that help you build robot applications.

Architecture for process communication
+

Suite of development tools
+
Libraries

ROS Features

Modular

* Programs are peer-to-peer
* They communicate over defined API

Ditributed
* Modules can run on different devices (on-board or over the network)

Multi-language
* Modules can be written in any supported language
e C++, Python, Javascript, Java, MATLAB, LISP
* Transparent to the user

Light-weight
Open-source

Widely used in both open/commercial robot and in the industry

Plumbing

Process Management
Inter-process
communication
Device drivers

Tools

Simulation
Visualization
GUI

Data logging

'-...
LA B J
—-—

@ e
s R
J
h
A =\
S
-

Capabilities

e Control

* Planning

* Perception

* Mapping

* Manipulation

Ecosystem

Package organization
Software distribution
Documentation
Tutorials

Plumbing

Modular

Parallel execution
* Each node executed in its own process

Publish-subscribe

B I
-

— — J—

w0
Camera

(Depth Image
Point Cloud R’

@SBD to La@

T
S

Obstacle \ KLaser Sean
Detector / v

N Localizati(D

Obstacle Position

—

éstacle TracE Robot Pose
N /

p

Odometry

Obstacle Position

ey

\&on Planner
Ackermann command

ectronic Speed
Controller

El

o

Tools: @ GAZEBO

e Simulate 3d rigid-body dynamics

* Simulate sensors

e 3D GUI ‘ —m “$+0 008 |%%2 @
e Database of robots/envs

$ rosrun rviz

— - : . .
@ Interact r{}! Move Camera || _JSelect <- FocusCamera mm Measure 2D Pose Estimate » 2D Nav Goal 9 Publish Point qp = 5

3 Displays
v’ [base_... Transform OK
@ /map /base_link
© /my fr... /base_link
v’ fodom Transform OK
v’ flaser Transform OK
Show Names (¥
Show Axes
Show Arrows
Marker Scale
Update Inter...
Frame Timeout
» Frames
> Tree
v ® Map &
» @ status:w...
Topic /map
Alpha 0.7
Draw Behind
Resolution
width
Height 0
» Position 0;0;0
» Orientation 0;0;0; 1

%

(S

e — ey
(%]

/map
/base_link

Add

(© Time =

ROS Time: |1434614583.21 ROS Elapsed: |22580.81 wall Time: |1434614583.24 | Wall Elapsed: |22580.78 | Experimental

Capabilities

—— zed_camera
urg_node : -

hokuyo_node
ros_zed_cuda_driver
stereo_image_proc

Perce ption cameral394

razor_imu_9dof

Planning

hector_slam

|
Control |
move_base /
PID_control

vanishing_point
rosserial_python

ROS Components

Communication architecture

o

Master

* Manages connection between nodes

* Enables nodes to locate one another

ROS Master
Start Master (and setup the ROS env)

$ roscore

Node

Executable program
Individually managed/executed

Organized in packages

Every node registers with the master
at startup

Run a node

$ rosrun package name node name

See active nodes

$ rosnode list

ROS Master

Registration Registration

$ rosnode info node name

$ rosnode kill node name

$ rosnode ping node name

Topics

 Nodes communicates over topics
* Topics are channels

* for data streaming

* Tipically one-to-many

List active topics
$ rostopic list

Subscribe and print messages
$ rostopic echo /topic

Topic info
$ rostopic info /topic

ROS Master

\
Advertise(topic) \\ Subscribe(topic)
|
Node 1 o Node 2
(Publisher) 7 (Subscriber)
\
| \
v |
| i ~— —Subscribe
Publish- — » topic

A4— — Subscribe— —»

When a node subscribe to an existing topic, a channel
between the publisher and the subscriber is opened

Messages

e Strongly-typed data structure
* Define the type of a topic
* Defined in .msg files

See the type of a topic
$ rostopic type /topic

Publish a message to a topic

$ rostopic pub /topic type args

ROS Master

Node 1 Node 2
(Publisher) (Subscriber)

| |
~—— —Subscribe

4+— — Subscribe— —»

| e .
Publish- — —» topic

| Message definition
I

int number
double width

string description

.msg

Communication between nodes

communicate messages via topics

Many nodes can pub/sub to the same topic

Communication is direct node-to-node

Messages are asynchronous

Publishers don’t know if anyone’s listening

Messages may be dropped

Subscribers are event-triggered by incoming messages

Topics vs Messages

Topics are channels, Messages are data types

Different topics can use the same message type

/camera_1/rgb

camera_1 image ... image ...

image_processing

/camera_2/rgb

camera_2 image ... image ...

Packages

Executable processes

Nodes
Messages
Services /

» Data types

Software in ROS is organized into packages
* A package contains one or more nodes

Services

* ROS implementation of request/response
* Providing node advertise the service by name

* Requests and responses are defined in .svr files
* Bi-directional communication
* 2yncronous Node 1 Request Node 2
(server) Response (client)
\
AN /
AN /
AN /
AN /7
\\ //
Announce service request service
o '\ /' Q
AN /
AN /7
AN /
\\ 7
A »

ROS Master

ROS Workspace and Build

build

Catkin

The ROS build system

e Custom Cmake macros + Python code

Catkin Workspace

Work Here Don't touch

a

ﬂ

Src build

The source space The build space
contains the source code contains intermediate files

Don't touch

devel

The devel space
contains the executables
(prior to install)

Catkin Workspace

* Build multiple packages

Create a workspace

* It will create the CMakelists
$ mkdir ./catkin_ws/src

$ cd ./catkin _ws/src
$ catkin_init workspace

Build the workspace
It builds all the packages
* Creates build and devel
$ cd ../

$ catkin_make

Optional install parameter: “catkin_make instal

workspace folder/
src/
CMakeLists.txt
package 1/
CMakeLists.txt

package.xml
package n/

CMakeLists.txt

package.xml

WORKSPACE
SOURCE SPACE
'"Toplevel' CMake file, provided by catkin

CMakeLists.txt file for package 1

Package manifest for package 1

CMakeLists.txt file for package n
Package manifest for package n

Sourcing

* You need to add the workspace to the ROS env
* It adds variables to the bash session
* So ROS can locate the packages

$ source catkin ws/devel/setup.sh

* During installation you configured bash to automatically load the ROS installed env at startup

$ echo "source /opt/ros/melodic/setup.bash” >> ~/.bashrc source ~/.bashrc

Catkin Packages

. A package contains at least:
* A package contains source code,

launch files, config files, message my_package/

definitions, data, documentation CMakeLists.txt

. kage . xml
 Dependencies among packages can be pacKags .t

declared

Create a package with dependencies:
* It creates CMakelists.txt and package.xml

$ catkin create pkg pkg name [dependencies]

Catkin Packages Files

package.xml

* Contains the metadata of a package
- name, description, version, maintainer(s), license
- opt. authors, url, dependencies, plugins, etc...

CMakelLists.txt

* Build rules for catkin
- “Read” the package.xml
- find other catkin packages to access libraries / include directories
- export items for other packages depending on you

Catkin Packages Files

package.xml

1 <?xml version="1.0"?2>

2 <package format="2">

3

0 N 0 U s

9
10
1Lk
12
1k
14
5
16
17
18
19
20
21

<name>beginner tutorials</name>
<version>0.1l.0</version>
<description>The beginner tutorials package</description>

<maintainer email="you@yourdomain.tld">Your Name</maintainer>
<license>BSD</license>

<url type="website">http://wiki.ros.org/beginner tutorials</url>
<author email="youl@yourdomain.tld">Jane Doe</author>

<buildtool depend>catkin</buildtool depend>

<build depend>roscpp</build depend>
<build depend>rospy</build depend>
<build depend>std msgs</build depend>

<exec_depend>roscpp</exec_depend>
<exec_depend>rospy</exec_ depend>
<exec_depend>std msgs</exec_depend>

22 </package>

CMakelists.txt

 Complex and non-intuitive
* Designed for machines

* You typically don’t modify it

Navigating Across ROS Packages

* rosbash

- roscd —change directory to a package
o you can reach a package dir without knowing the path
o e.g.roscd rospy

- rosls —listfiles of a package

* Where are the packages?
* Installed ones: /opt/ros/<distro>
e Typically without source code

* User ones: anywhere
* Found thanks to sourcing

Launch files

* Launch multiple nodes with one command i
<group ns="turtlesiml">
<node pkg="turtlesim" name="sim" type="turtlesim_node"/>

e roslaunch starts nodes as defined in the

IaunCh flle </group>
* Nodes are executed sequentially <group ns="turtlesim2">
° |t starts the Master WithOUt having to write it <node pkg="turtlesim" name="sim" type="turtlesim_node

</qroup>

e Accept arguments, can perform simple if-then

<node pkg="turtlesim" name="mimic" type="mimic">
<remap from="input" to="turtlesiml/turtlel"/>
<remap from="output" to="turtlesim2/turtlel"/>
</node>

$ roslaunch [package] [filename.launch]

</launch>

* To visualize the graph of launched nodes

$ rgqt_graph

Lab Exercise

* Create a workspace

 Add and build the Fl1tenth simulator:
https://f1tenth.readthedocs.io/en/stable/qoing forward/simulator/sim install.html#

* Pay attention to the building process
* Inspect package.xml, CMakelLists.txt, .launch files
* Inspect other files

* Launch the simulator
* Play with the simulator keys (To select the behavior:j k b r n)
 Lists and analyze the nodes and the topics
Vizualize the nodes graph
Print the info and the (message) type of the topic /scan /odom /nav
Echo of /scan (use —n1 to limit the print to one message)
Publish a command to /nav (args example: "drive: {speed: 0.5}")

https://f1tenth.readthedocs.io/en/stable/going_forward/simulator/sim_install.html

ROS Versions
EEIEEE ERENE S

ROS Versions

y . Melo

& Mofenxa

z‘%

Distribution

Melodic

Noetic

Foxy

EOL date

May 2023

May 2025

May 2023

Details

Last version for Ubuntu 18.04

Last ROS 1 release, Ubuntu 20.04

Latest LTS ROS 2 version, Ubuntu 20.04

ROS1 vs ROS2

e Support also for Windows,
MacOs, RTOS

* Real-time nodes
e Python3 native
e Quality of Service

* Launch files in Python instead
of XML

* Multiple nodes per process
* Data Distributed System (DDS)

* More..

Application
Layer

Middleware
Layer

Application Application
ROS2
Client Library Client Library
Abstract DDS Layer
TCPROS/UDPROS NoCe et
AP DDS Intra-process
API|
Linux Linux/Windows/Mac/RTOS

http://design.ros2.org/articles/changes.html

