
ROS: Robot Operating System

Michael Bosello
michael.bosello@unibo.it

Smart Vehicular Systems A.Y. 2021/2022



Acknowledgements

Thanks to Prof. Madhur Behl from University of Virginia
• for some of the slides and illustrations

https://linklab-uva.github.io/autonomousracing/

https://linklab-uva.github.io/autonomousracing/


‘Is a set of software libraries and tools 
that help you build robot applications.’

Robot Operating System

Architecture for process communication
+

Suite of development tools
+

Libraries



ROS Features

• Modular
• Programs are peer-to-peer
• They communicate over defined API

• Ditributed
• Modules can run on different devices (on-board or over the network)

• Multi-language
• Modules can be written in any supported language
• C++, Python, Javascript, Java, MATLAB, LISP
• Transparent to the user

• Light-weight
• Open-source

• Widely used in both open/commercial robot and in the industry



• Process Management
• Inter-process 

communication
• Device drivers

• Simulation
• Visualization
• GUI
• Data logging

• Control
• Planning
• Perception
• Mapping
• Manipulation

• Package organization
• Software distribution
• Documentation
• Tutorials



Plumbing
• Modular
• Parallel execution

• Each node executed in its own process

• Publish-subscribe



Tools:

• Simulate 3d rigid-body dynamics
• Simulate sensors
• 3D GUI
• Database of robots/envs



Tools:
$ rosrun rviz rviz



Capabilities



ROS Components
Communication architecture



Master

• Manages connection between nodes
• Enables nodes to locate one another

Start Master (and setup the ROS env)
$ roscore



Node

• Executable program
• Individually managed/executed
• Organized in packages
• Every node registers with the master 

at startup

Run a node

See active nodes

$ rosrun package_name node_name

$ rosnode list
$ rosnode info node_name

$ rosnode kill node_name

$ rosnode ping node_name



Topics
• Nodes communicates over topics
• Topics are channels
• for data streaming
• Tipically one-to-many

List active topics

Subscribe and print messages

Topic info

$ rostopic list

$ rostopic echo /topic

$ rostopic info /topic

When a node subscribe to an existing topic, a channel 
between the publisher and the subscriber is opened



Messages
• Strongly-typed data structure
• Define the type of a topic
• Defined in .msg files

See the type of a topic

Publish a message to a topic
$ rostopic pub /topic type args

$ rostopic type /topic



Communication between nodes

Nodes communicate messages via topics
• Many nodes can pub/sub to the same topic
• Communication is direct node-to-node

Messages are asynchronous
• Publishers don’t know if anyone’s listening
• Messages may be dropped
• Subscribers are event-triggered by incoming messages



Topics vs Messages

Topics are channels, Messages are data types
Different topics can use the same message type



Packages

Software in ROS is organized into packages
• A package contains one or more nodes



Services
• ROS implementation of request/response

• Providing node advertise the service by name
• Requests and responses are defined in .svr files
• Bi-directional communication

• Syncronous



ROS Workspace and Build



Catkin

The ROS build system
• Custom Cmake macros + Python code

Catkin Workspace



Catkin Workspace

• Build multiple packages

Create a workspace
• It will create the CMakeLists

Build the workspace
• It builds all the packages
• Creates build and devel

$ mkdir ./catkin_ws/src
$ cd ./catkin_ws/src
$ catkin_init_workspace

$ cd ../
$ catkin_make

Optional install parameter: “catkin_make install”



Sourcing

• You need to add the workspace to the ROS env
• It adds variables to the bash session
• So ROS can locate the packages

• During installation you configured bash to automatically load the ROS installed env at startup

$ source catkin_ws/devel/setup.sh

$ echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc source ~/.bashrc



Catkin Packages

• A package contains source code, 
launch files, config files, message 
definitions, data, documentation
• Dependencies among packages can be 

declared

Create a package with dependencies:
• It creates CMakeLists.txt and package.xml

$ catkin_create_pkg pkg_name [dependencies]

A package contains at least: 



Catkin Packages Files

package.xml
• Contains the metadata of a package

- name, description, version, maintainer(s), license
- opt. authors, url, dependencies, plugins, etc...

CMakeLists.txt
• Build rules for catkin

- “Read” the package.xml
- find other catkin packages to access libraries / include directories
- export items for other packages depending on you



Catkin Packages Files
package.xml CMakeLists.txt

• Complex and non-intuitive
• Designed for machines

• You typically don’t modify it



Navigating Across ROS Packages

• rosbash
- roscd – change directory to a package

o you can reach a package dir without knowing the path
o e.g. roscd rospy

- rosls – list files of a package
- …

• Where are the packages?
• Installed ones: /opt/ros/<distro>

• Typically without source code
• User ones: anywhere

• Found thanks to sourcing



Launch files

• Launch multiple nodes with one command
• roslaunch starts nodes as defined in the 

launch file
• Nodes are executed sequentially
• It starts the Master without having to write it
• Accept arguments, can perform simple if-then

• To visualize the graph of launched nodes

$ roslaunch [package] [filename.launch]

$ rqt_graph



Lab Exercise

• Create a workspace
• Add and build the F1tenth simulator: 

https://f1tenth.readthedocs.io/en/stable/going_forward/simulator/sim_install.html#
• Pay attention to the building process
• Inspect package.xml, CMakeLists.txt, .launch files
• Inspect other files

• Launch the simulator
• Play with the simulator keys (To select the behavior: j k b r n)
• Lists and analyze the nodes and the topics
• Vizualize the nodes graph
• Print the info and the (message) type of the topic /scan /odom /nav
• Echo of /scan (use –n1 to limit the print to one message)
• Publish a command to /nav (args example: "drive: {speed: 0.5}")

https://f1tenth.readthedocs.io/en/stable/going_forward/simulator/sim_install.html


ROS Versions



ROS Versions
Distribution EOL date Details

Melodic May 2023 Last version for Ubuntu 18.04

Noetic May 2025 Last ROS 1 release, Ubuntu 20.04

Foxy May 2023 Latest LTS ROS 2 version, Ubuntu 20.04



ROS1 vs ROS2

• Support also for Windows, 
MacOs, RTOS

• Real-time nodes
• Python3 native

• Quality of Service
• Launch files in Python instead 

of XML

• Multiple nodes per process
• Data Distributed System (DDS)

• More..

http://design.ros2.org/articles/changes.html

