
F1tenth and Autonomous Driving 
an Introduction

Michael Bosello
michael.bosello@unibo.it

Smart Vehicular Systems A.Y. 2021/2022



F1TENTH: 1/10th scale Autonomous Racing

• Hardware/software stacks similar to full-scale solutions
• Ackermann steering 
• High speeds

Very realistic 1/10 
scale car prototype

The same code can run on the ad-hoc simulator

• The agent still faces challenges of a real driving scene
• Inexpensive
• Safe













Steering

Ackermann steering
• 1 motor
• 1 servo

Differential steering
• 2 motors



2D LIDAR (Light Detection And Ranging)

Sensor for measuring distances
• Emits focused light beams
• Measure the time of flight

• 2D: map of the azimuth at a fixed height

• Produces a vector of distances/intensities

• High frequency

• LIDAR measurements are greatly affected by reflection
• When a ray gets reflected, it appears as it is no obstacle in that direction

Source: Wikipedia



Hokuyo UST-10LX
-270° field of view
-0.25° angular resolution
-1081 scan rays
-10m detection range
-±40mm accuracy
-25ms scan speed 



Stereo Camera



3D LIDAR



Simulator

• Simplified dynamics
• No sensors/actuators noises



Sim2real Problem
• Divergence from real dynamics

• Sensors/actuators noises

• High speed + embedded system = resource constrains

Classical control:
Simplified dynamics could lead to fail

Learning:
Data differs, e.g. image texture
You need some form of transfer learning



Autonomous Racing and Autonomous Driving
Environment
• Non-deterministic
• Partially observable
• Dynamic



Indy Autonomous Challenge



The Race Problems

Approaches
• Single Task Handling

• Use human ingenuity to inject knowledge about the domain
• End-to-end Learning

• Let the algorithm optimize towards the final goal without constrains

Perception. Planning. Control.





Perception: Recognition

Mainly based on Deep Learning
• Classical Computer Vision algorithms

• Not robust enough
• Slow

• Convolutional Neural Networks 
(CNNs)

YOLO v3



• Localization in respect to:
• The environment
• Objects of interest

• Simultaneous Localization and Mapping (SLAM)
• Several algorithm based on LIDAR measurements

• CNN
• Pose estimation
• Visual Inertial Odometry

• Sensors:
• LIDAR
• Depth Camera
• IMU/Odometry

Perception: Localization and Mapping



Planning and Control

• Planning
• Classical Motion Planning

• Time-optimal motion primitive (closed-form)
• Search-based (like Dijkstra)
• Sampling-based

• Control
• Closed-loop solutions

• Proportional–Integral–Derivative controller (PID)
• Model Predictive Control (MPD)

• Reactive methods
• Follow The Gap (FTG)
• Wall following (obstacle avoidance)

• Deep Learning, Reinforcement Learning



Classical Motion Planning and Control 

• You can find the theoretical optimal solution
• If you have enough knowledge about the environment

• Human understandable
• Verificable

• Slow
• It may require hours
• You need to simplify the model dynamics to use it in real-time

• If you simplify the model, the result will diverge from the expected one
• The higher the speed, the higher the divergence from the real setting



Learning-Based Approaches

Supervised Learning
• Based on imitation

• Current approach by major car manufacturer 

Drawbacks
• Training data

• huge amounts of labelled data or human effort
• Covering all possible driving scenarios is very hard

• You can use them end-to-end
• Could be more robust
• Faster



Learning-Based Approaches

Reinforcement Learning

• Learns by interacting with the environment through trial-and-error
Ø Does not require explicit supervision from humans

• RL is specifically formulated to handle the agent-environment interaction
Ø Natural approach for learning robotics (and autonomous driving)

• Mainly used on simulated environment
• to avoid consequences in real-life
• transferring learning from simulations to the real world is a hard problem

• simulated and real data have not the same distribution
• agents trained in a synthesized world often fail to generalize

• if appropriate domain adaptation measures are not taken.



Next Lessons Overview

• We start with the backbone of the platform: ROS
• We will then just introduce some topics from the applicative PoV
• According to the projects of interest

• Research in Autonomous Driving/Racing has many topics
• We will mainly focus on high-level software components
• Topics are just introduced to support the project
• You will need to deepen the topic you will chose



Lab preparation

• We will use Ubuntu 18.04
• The simulator is lightweight, so
• You can use your laptop
• VM is fine

• Install ROS Melodic desktop-full
• Install Tensorflow

• $ pip3 install tensorflow

http://wiki.ros.org/melodic/Installation/Ubuntu

